Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2024.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2024.04.03.587929

ABSTRACT

The variable etiology of persistent breathlessness after COVID-19 have confounded efforts to decipher the immunopathology of lung sequelae. Here, we analyzed hundreds of cellular and molecular features in the context of discrete pulmonary phenotypes to define the systemic immune landscape of post-COVID lung disease. Cluster analysis of lung physiology measures highlighted two phenotypes of restrictive lung disease that differed by their impaired diffusion and severity of fibrosis. Machine learning revealed marked CCR5+CD95+ CD8+ T-cell perturbations in mild-to-moderate lung disease, but attenuated T-cell responses hallmarked by elevated CXCL13 in more severe disease. Distinct sets of cells, mediators, and autoantibodies distinguished each restrictive phenotype, and differed from those of patients without significant lung involvement. These differences were reflected in divergent T-cell-based type 1 networks according to severity of lung disease. Our findings, which provide an immunological basis for active lung injury versus advanced disease after COVID-19, might offer new targets for treatment.


Subject(s)
Fibrosis , Lung Diseases , COVID-19
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.09.20228411

ABSTRACT

Background: Detailed understanding of the immune response to SARS-CoV-2, the cause of coronavirus disease 2019 (COVID-19), has been hampered by a lack of quantitative antibody assays. Objective: To develop a quantitative assay for IgG to SARS-CoV-2 proteins that could readily be implemented in clinical and research laboratories. Methods: The biotin-streptavidin technique was used to conjugate SARS-CoV-2 spike receptor-binding-domain (RBD) or nucleocapsid protein to the solid-phase of the ImmunoCAP resin. Plasma and serum samples from patients with COVID-19 (n=51) and samples from donors banked prior to the emergence of COVID-19 (n=109) were used in the assay. SARS-CoV-2 IgG levels were followed longitudinally in a subset of samples and were related to total IgG and IgG to reference antigens using an ImmunoCAP 250 platform. Results: Performance characteristics demonstrated 100% sensitivity and 99% specificity at a cut-off level of 2.5 g/mL for both SARS-CoV-2 proteins. Among 36 patients evaluated in a post-hospital follow-up clinic, median levels of IgG to spike-RBD and nucleocapsid were 34.7 g/mL (IQR 18-52) and 24.5 g/mL (IQR 9-59), respectively. Among 17 patients with longitudinal samples there was a wide variation in the magnitude of IgG responses, but generally the response to spike-RBD and to nucleocapsid occurred in parallel, with peak levels approaching 100 g/mL, or 1% of total IgG. Conclusions: We have described a quantitative assay to measure IgG to SARS-CoV-2 that could be used in clinical and research laboratories and implemented at scale. The assay can easily be adapted to measure IgG to novel antigens, has good performance characteristics and a read-out in standardized units.


Subject(s)
Ossification of Posterior Longitudinal Ligament , Severe Acute Respiratory Syndrome , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL